
LLNL-CONF-543971

Index Sets and Vectorization

J. A. Keasler

April 2, 2012

Emerging Technologies in HPC Application Development
Livermore, CA, United States
March 19, 2012 through March 21, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

LLNL-PRES-xxxxxx

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL Emerging Technologies in HPC Application Development Workshop

March 19-21, 2012

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
2

 Data parallelism (SIMD, SIMT, etc.): extension of

ISA enabling the same instruction to be

performed on multiple data items simultaneously

Instruction Pool

D
a
ta

 P
o
o
l

PU

PU

PU

PU

 Many/most CPUs support
vectorization in some form

 Hardware core vector lengths
SSE 4 SP
SSE2 2 DP, 4 SP
AVX 4 DP, 8 SP
MIC 8 DP, 16 SP
BG/P 2 DP
BG/Q 4 DP

PU = processing unit

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
3

- Extra programmer effort is required

- Not all algorithms can be vectorized (regular algorithm structure &
fine-grain parallelism must be used)

- Most CPUs have data alignment restrictions for load/store
operations (obey or risk incorrect code)

- Special directives are often needed to enable vectorization

- Vector instructions are architecture-specific

+ Vectorization is the best way to optimize for power and
performance due to reduced clock cycles

+ When data is organized properly, a vector load instruction (i.e.
movaps) can replace ‘normal’ load instructions (i.e. movsd)

+ Vector operations can potentially have a smaller footprint in the
instruction cache when fewer instructions need to be executed

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
4

 Vectorized (DP 2 load, 2 store, 2 flop, 6 cycle)

loop: movaps (%rbx,%rsi,8), %xmm0

 mulpd %xmm0, %xmm0

 movaps %xmm0, (%rdx,%rsi,8)

 addq $2, %rsi

 cmpq %rax, %rsi

 jb loop

 Unvectorized(DP 1 load, 1 store, 1 flop, 6 cycle)

loop: movsd (%rbx,%rax,8), %xmm0

 mulsd %xmm0, %xmm0

 movsd %xmm0, (%rdx,%rax,8)

 incq %rax

 cmpq %rcx, %rax

 jb loop

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
5

 Vectorized
loop:
movsd (%rsi,%rdi,8), %xmm0
movhpd 8(%rsi,%rdi,8), %xmm0
mulpd %xmm0, %xmm0
movsd %xmm0, (%rdx,%rdi,8)
movhpd %xmm0, 8(%rdx,%rdi,8)
movsd 16(%rsi,%rdi,8), %xmm1
movhpd 24(%rsi,%rdi,8), %xmm1
mulpd %xmm1, %xmm1
movsd %xmm1, 16(%rdx,%rdi,8)
movhpd %xmm1,24(%rdx,%rdi,8)
movsd 32(%rsi,%rdi,8), %xmm2
movhpd 40(%rsi,%rdi,8), %xmm2

mulpd %xmm2, %xmm2

movsd %xmm2, 32(%rdx,%rdi,8)

movhpd %xmm2, 40(%rdx,%rdi,8)

movsd 48(%rsi,%rdi,8), %xmm3

movhpd 56(%rsi,%rdi,8), %xmm3

mulpd %xmm3, %xmm3

movsd %xmm3, 48(%rdx,%rdi,8)

movhpd %xmm3, 56(%rdx,%rdi,8)

addq $8, %rdi

cmpq %rax, %rdi

jb loop

 •This is the typical vectorized code produced by the compiler for SSE2

•Executes four instructions per operation instead of three

• Above code does not show generated prologue and epilogue code

• Does not show additional loop versions for other alignment cases

• This has a large footprint in the instruction cache

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
6

 Vectorized

loop:

vmovupd 32(%r8,%rcx,8), %ymm1

vmovupd (%r8,%rcx,8), %ymm0

vmulpd %ymm1, %ymm1, %ymm3

vmulpd %ymm0, %ymm0, %ymm2

vmovupd %xmm2, (%rdi,%rcx,8)

vmovupd %xmm3, 32(%rdi,%rcx,8)

vextractf128 $1, %ymm2, 16(%rdi,%rcx,8)

vextractf128 $1, %ymm3, 48(%rdi,%rcx,8)

vmovupd 96(%r8,%rcx,8), %ymm5

vmovupd 64(%r8,%rcx,8), %ymm4

vmulpd %ymm5, %ymm5, %ymm7

vmulpd %ymm4, %ymm4, %ymm6

vmovupd %xmm6, 64(%rdi,%rcx,8)

vmovupd %xmm7, 96(%rdi,%rcx,8)

vextractf128 $1, %ymm6, 80(%rdi,%rcx,8)

vextractf128 $1, %ymm7, 112(%rdi,%rcx,8)

addq $16, %rcx

cmpq %rdx, %rcx

jb loop

•This is the typical vectorized code produced by the compiler for AVX

•Similar issues to SSE2, but operations work on longer vectors

• Above code does not show generated prologue and epilogue code

• Does not show additional loop versions for other alignment cases

• This has a large footprint in the instruction cache

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
7

 Vectorized (16 load, 16 store, 16 flop, 15 cycle)

loop:

vmovupd (%rbx,%rsi,8), %ymm0

vmulpd %ymm0, %ymm0, %ymm1

vmovupd %ymm1, (%rdx,%rsi,8)

vmovupd 32(%rbx,%rsi,8), %ymm2

vmulpd %ymm2, %ymm2, %ymm3

vmovupd %ymm3, 32(%rdx,%rsi,8)

vmovupd 64(%rbx,%rsi,8), %ymm4

vmulpd %ymm4, %ymm4, %ymm5

vmovupd %ymm5, 64(%rdx,%rsi,8)

vmovupd 96(%rbx,%rsi,8), %ymm6

vmulpd %ymm6, %ymm6, %ymm7

vmovupd %ymm7, 96(%rdx,%rsi,8)

addq $16, %rsi

cmpq %rax, %rsi

jb loop

 This could be the default code generated with the proper

programming model: no prologue, no epilogue, no loop versioning

likely bandwidth

limited with this code

density per core

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
8

 We have applied hybrid index sets to achieve
optimal vectorization

 We can extend this concept to handle other
programming models

 Finally, we can do even better!

• Current traversal implementations contain detailed
compiler directives

• We have proven the compiler is capable of good
vectorization but not conveniently exposed

• We would like to start a dialogue with compiler
vendors to better expose vectorization for our needs

